Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
2.
Cancers (Basel) ; 15(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958364

RESUMO

Convolutional neural networks (CNNs) are becoming increasingly valuable tools for advanced computational histopathology, promoting precision medicine through exceptional visual decoding abilities. Meningiomas, the most prevalent primary intracranial tumors, necessitate accurate grading and classification for informed clinical decision-making. Recently, DNA methylation-based molecular classification of meningiomas has proven to be more effective in predicting tumor recurrence than traditional histopathological methods. However, DNA methylation profiling is expensive, labor-intensive, and not widely accessible. Consequently, a digital histology-based prediction of DNA methylation classes would be advantageous, complementing molecular classification. In this study, we developed and rigorously assessed an attention-based multiple-instance deep neural network for predicting meningioma methylation classes using tumor methylome data from 142 (+51) patients and corresponding hematoxylin-eosin-stained histological sections. Pairwise analysis of sample cohorts from three meningioma methylation classes demonstrated high accuracy in two combinations. The performance of our approach was validated using an independent set of 51 meningioma patient samples. Importantly, attention map visualization revealed that the algorithm primarily focuses on tumor regions deemed significant by neuropathologists, offering insights into the decision-making process of the CNN. Our findings highlight the capacity of CNNs to effectively harness phenotypic information from histological sections through computerized images for precision medicine. Notably, this study is the first demonstration of predicting clinically relevant DNA methylome information using computer vision applied to standard histopathology. The introduced AI framework holds great potential in supporting, augmenting, and expediting meningioma classification in the future.

3.
Brain Pathol ; : e13228, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012085

RESUMO

The current state-of-the-art analysis of central nervous system (CNS) tumors through DNA methylation profiling relies on the tumor classifier developed by Capper and colleagues, which centrally harnesses DNA methylation data provided by users. Here, we present a distributed-computing-based approach for CNS tumor classification that achieves a comparable performance to centralized systems while safeguarding privacy. We utilize the t-distributed neighborhood embedding (t-SNE) model for dimensionality reduction and visualization of tumor classification results in two-dimensional graphs in a distributed approach across multiple sites (DistSNE). DistSNE provides an intuitive web interface (https://gin-tsne.med.uni-giessen.de) for user-friendly local data management and federated methylome-based tumor classification calculations for multiple collaborators in a DataSHIELD environment. The freely accessible web interface supports convenient data upload, result review, and summary report generation. Importantly, increasing sample size as achieved through distributed access to additional datasets allows DistSNE to improve cluster analysis and enhance predictive power. Collectively, DistSNE enables a simple and fast classification of CNS tumors using large-scale methylation data from distributed sources, while maintaining the privacy and allowing easy and flexible network expansion to other institutes. This approach holds great potential for advancing human brain tumor classification and fostering collaborative precision medicine in neuro-oncology.

4.
Nucleus ; 14(1): 2274655, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37906621

RESUMO

The nucleolus, the largest subcompartment of the nucleus, stands out from the nucleoplasm due to its exceptionally high local RNA and low DNA concentrations. Within this central hub of nuclear RNA metabolism, ribosome biogenesis is the most prominent ribonucleoprotein (RNP) biogenesis process, critically determining the structure and function of the nucleolus. However, recent studies have shed light on other roles of the nucleolus, exploring the interplay with various noncoding RNAs that are not directly involved in ribosome synthesis. This review focuses on this intriguing topic and summarizes the techniques to study and the latest findings on nucleolar long noncoding RNAs (lncRNAs) as well as microRNAs (miRNAs) in the context of nucleolus biology beyond ribosome biogenesis. We particularly focus on the multifaceted roles of the nucleolus and noncoding RNAs in physiology and tumor biology.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Biologia
5.
Acta Neuropathol Commun ; 11(1): 80, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170361

RESUMO

Peroxisomes are eukaryotic organelles that rapidly change in number depending on the metabolic requirement of distinct cell types and tissues. In the brain, these organelles are essential for neuronal migration and myelination during development and their dysfunction is associated with age-related neurodegenerative diseases. Except for one study analysing ABCD3-positive peroxisomes in neurons of the frontal neocortex of Alzheimer disease (AD) patients, no data on other brain regions or peroxisomal proteins are available. In the present morphometric study, we quantified peroxisomes labelled with PEX14, a metabolism-independent peroxisome marker, in 13 different brain areas of 8 patients each either with low, intermediate or high AD neuropathological changes compared to 10 control patients. Classification of patient samples was based on the official ABC score. During AD-stage progression, the peroxisome density decreased in the area entorhinalis, parietal/occipital neocortex and cerebellum, it increased and in later AD-stage patients decreased in the subiculum and hippocampal CA3 region, frontal neocortex and pontine gray and it remained unchanged in the gyrus dentatus, temporal neocortex, striatum and inferior olive. Moreover, we investigated the density of catalase-positive peroxisomes in a subset of patients (> 80 years), focussing on regions with significant alterations of PEX14-positive peroxisomes. In hippocampal neurons, only one third of all peroxisomes contained detectable levels of catalase exhibiting constant density at all AD stages. Whereas the density of all peroxisomes in neocortical neurons was only half of the one of the hippocampus, two thirds of them were catalase-positive exhibiting increased levels at higher ABC scores. In conclusion, we observed spatiotemporal differences in the response of peroxisomes to different stages of AD-associated pathologies.


Assuntos
Doença de Alzheimer , Neocórtex , Humanos , Doença de Alzheimer/patologia , Peroxissomos/metabolismo , Peroxissomos/patologia , Catalase/metabolismo , Projetos Piloto , Neocórtex/patologia
6.
Clin Neuropathol ; 42(3): 112-121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999511

RESUMO

We previously reported on the first neuropathological round robin trials operated together with Quality in Pathology (QuIP) GmbH in 2018 and 2019 in Germany, i.e., the trials on IDH mutational testing and MGMT promoter methylation analysis [1]. For 2020 and 2021, the spectrum of round robin trials has been expanded to cover the most commonly used assays in neuropathological institutions. In addition to IDH mutation and MGMT promoter methylation testing, there is a long tradition for 1p/19q codeletion testing relevant in the context of the diagnosis of oligodendroglioma. With the 5th edition of the World Health Organization (WHO) classification of the central nervous system tumors, additional molecular markers came into focus: TERT promoter mutation is often assessed as a molecular diagnostic criterion for IDH-wildtype glioblastoma. Moreover, several molecular diagnostic markers have been introduced for pediatric brain tumors. Here, trials on KIAA1549::BRAF fusions (common in pilocytic astrocytomas) and H3-3A mutations (in diffuse midline gliomas, H3-K27-altered and diffuse hemispheric gliomas, H3-G34-mutant) were most desired by the neuropathological community. In this update, we report on these novel round robin trials. In summary, success rates in all four trials ranged from 75 to 96%, arguing for an overall high quality level in the field of molecular neuropathological diagnostics.


Assuntos
Biomarcadores Tumorais , Deleção Cromossômica , Testes Genéticos , Histonas , Mutação , Proteínas de Fusão Oncogênica , Regiões Promotoras Genéticas , Telomerase , Criança , Humanos , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Alemanha , Histonas/genética , Proteínas de Membrana/genética , Oligodendroglioma/diagnóstico , Oligodendroglioma/genética , Proteínas de Fusão Oncogênica/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Telomerase/genética
7.
Cells ; 11(13)2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35805204

RESUMO

Chronic obstructive pulmonary disease (COPD) is a disease with an inflammatory phenotype with increasing prevalence in the elderly. Expanded population of mutant blood cells carrying somatic mutations is termed clonal hematopoiesis of indeterminate potential (CHIP). The association between CHIP and COPD and its relevant effects on DNA methylation in aging are mainly unknown. Analyzing the deep-targeted amplicon sequencing from 125 COPD patients, we found enhanced incidence of CHIP mutations (~20%) with a predominance of DNMT3A CHIP-mediated hypomethylation of Phospholipase D Family Member 5 (PLD5), which in turn is positively correlated with increased levels of glycerol phosphocholine, pro-inflammatory cytokines, and deteriorating lung function.


Assuntos
Hematopoiese Clonal , Doença Pulmonar Obstrutiva Crônica , Idoso , Expressão Gênica , Hematopoese/genética , Humanos , Mutação/genética , Doença Pulmonar Obstrutiva Crônica/genética
8.
Virchows Arch ; 481(2): 139-159, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35364700

RESUMO

The use of autopsies in medicine has been declining. The COVID-19 pandemic has documented and rejuvenated the importance of autopsies as a tool of modern medicine. In this review, we discuss the various autopsy techniques, the applicability of modern analytical methods to understand the pathophysiology of COVID-19, the major pathological organ findings, limitations or current studies, and open questions. This article summarizes published literature and the consented experience of the nationwide network of clinical, neuro-, and forensic pathologists from 27 German autopsy centers with more than 1200 COVID-19 autopsies. The autopsy tissues revealed that SARS-CoV-2 can be found in virtually all human organs and tissues, and the majority of cells. Autopsies have revealed the organ and tissue tropism of SARS-CoV-2, and the morphological features of COVID-19. This is characterized by diffuse alveolar damage, combined with angiocentric disease, which in turn is characterized by endothelial dysfunction, vascular inflammation, (micro-) thrombosis, vasoconstriction, and intussusceptive angiogenesis. These findings explained the increased pulmonary resistance in COVID-19 and supported the recommendations for antithrombotic treatment in COVID-19. In contrast, in extra-respiratory organs, pathological changes are often nonspecific and unclear to which extent these changes are due to direct infection vs. indirect/secondary mechanisms of organ injury, or a combination thereof. Ongoing research using autopsies aims at answering questions on disease mechanisms, e.g., focusing on variants of concern, and future challenges, such as post-COVID conditions. Autopsies are an invaluable tool in medicine and national and international interdisciplinary collaborative autopsy-based research initiatives are essential.


Assuntos
COVID-19 , Autopsia , Humanos , Pulmão/patologia , Pandemias , SARS-CoV-2
9.
Bioinform Adv ; 2(1): vbac009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699395

RESUMO

Summary: In the era of next generation sequencing and beyond, the Sanger technique is still widely used for variant verification of inconclusive or ambiguous high-throughput sequencing results or as a low-cost molecular genetical analysis tool for single targets in many fields of study. Many analysis steps need time-consuming manual intervention. Therefore, we present here a pipeline-capable high-throughput solution with an optional Shiny web interface, that provides a binary mutation decision of hotspots together with plotted chromatograms including annotations via flat files. Availability and implementation: SangeR is freely available at https://github.com/Neuropathology-Giessen/SangeR and https://hub.docker.com/repository/docker/kaischmid/sange_r. Contact: Kai.Schmid@patho.med.uni-giessen.de or Daniel.Amsel@patho.med.uni-giessen.de. Supplementary information: Supplementary data are available at Bioinformatics online.

10.
Acta Neuropathol ; 143(2): 263-281, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34967922

RESUMO

Oligodendrogliomas are defined at the molecular level by the presence of an IDH mutation and codeletion of chromosomal arms 1p and 19q. In the past, case reports and small studies described gliomas with sarcomatous features arising from oligodendrogliomas, so called oligosarcomas. Here, we report a series of 24 IDH-mutant oligosarcomas from 23 patients forming a distinct methylation class. The tumors were recurrences from prior oligodendrogliomas or developed de novo. Precursor tumors of 12 oligosarcomas were histologically and molecularly indistinguishable from conventional oligodendrogliomas. Oligosarcoma tumor cells were embedded in a dense network of reticulin fibers, frequently showing p53 accumulation, positivity for SMA and CALD1, loss of OLIG2 and gain of H3K27 trimethylation (H3K27me3) as compared to primary lesions. In 5 oligosarcomas no 1p/19q codeletion was detectable, although it was present in the primary lesions. Copy number neutral LOH was determined as underlying mechanism. Oligosarcomas harbored an increased chromosomal copy number variation load with frequent CDKN2A/B deletions. Proteomic profiling demonstrated oligosarcomas to be highly distinct from conventional CNS WHO grade 3 oligodendrogliomas with consistent evidence for a smooth muscle differentiation. Expression of several tumor suppressors was reduced with NF1 being lost frequently. In contrast, oncogenic YAP1 was aberrantly overexpressed in oligosarcomas. Panel sequencing revealed mutations in NF1 and TP53 along with IDH1/2 and TERT promoter mutations. Survival of patients was significantly poorer for oligosarcomas as first recurrence than for grade 3 oligodendrogliomas as first recurrence. These results establish oligosarcomas as a distinct group of IDH-mutant gliomas differing from conventional oligodendrogliomas on the histologic, epigenetic, proteomic, molecular and clinical level. The diagnosis can be based on the combined presence of (a) sarcomatous histology, (b) IDH-mutation and (c) TERT promoter mutation and/or 1p/19q codeletion, or, in unresolved cases, on its characteristic DNA methylation profile.


Assuntos
Neoplasias Encefálicas/patologia , Isocitrato Desidrogenase/genética , Oligodendroglioma/patologia , Sarcoma/patologia , Adulto , Idoso , Neoplasias Encefálicas/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Oligodendroglioma/genética , Sarcoma/genética
11.
Acta Neuropathol ; 142(5): 827-839, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34355256

RESUMO

Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients.


Assuntos
Proteínas de Ciclo Celular/genética , Ependimoma/genética , Neoplasias Supratentoriais/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Criança , Feminino , Humanos , Masculino , Fusão Oncogênica
12.
Acta Neuropathol ; 142(5): 841-857, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34417833

RESUMO

Large-scale molecular profiling studies in recent years have shown that central nervous system (CNS) tumors display a much greater heterogeneity in terms of molecularly distinct entities, cellular origins and genetic drivers than anticipated from histological assessment. DNA methylation profiling has emerged as a useful tool for robust tumor classification, providing new insights into these heterogeneous molecular classes. This is particularly true for rare CNS tumors with a broad morphological spectrum, which are not possible to assign as separate entities based on histological similarity alone. Here, we describe a molecularly distinct subset of predominantly pediatric CNS neoplasms (n = 60) that harbor PATZ1 fusions. The original histological diagnoses of these tumors covered a wide spectrum of tumor types and malignancy grades. While the single most common diagnosis was glioblastoma (GBM), clinical data of the PATZ1-fused tumors showed a better prognosis than typical GBM, despite frequent relapses. RNA sequencing revealed recurrent MN1:PATZ1 or EWSR1:PATZ1 fusions related to (often extensive) copy number variations on chromosome 22, where PATZ1 and the two fusion partners are located. These fusions have individually been reported in a number of glial/glioneuronal tumors, as well as extracranial sarcomas. We show here that they are more common than previously acknowledged, and together define a biologically distinct CNS tumor type with high expression of neural development markers such as PAX2, GATA2 and IGF2. Drug screening performed on the MN1:PATZ1 fusion-bearing KS-1 brain tumor cell line revealed preliminary candidates for further study. In summary, PATZ1 fusions define a molecular class of histologically polyphenotypic neuroepithelial tumors, which show an intermediate prognosis under current treatment regimens.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/patologia , Proteínas Repressoras/genética , Biomarcadores Tumorais/genética , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Fusão Oncogênica , Proteínas de Fusão Oncogênica/genética
13.
Ann Neurol ; 90(1): 143-158, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33999436

RESUMO

OBJECTIVE: Precursors of peptide hormones undergo posttranslational modifications within the trans-Golgi network (TGN). Dysfunction of proteins involved at different steps of this process cause several complex syndromes affecting the central nervous system (CNS). We aimed to clarify the genetic cause in a group of patients characterized by hypopituitarism in combination with brain atrophy, thin corpus callosum, severe developmental delay, visual impairment, and epilepsy. METHODS: Whole exome sequencing was performed in seven individuals of six unrelated families with these features. Postmortem histopathological and HID1 expression analysis of brain tissue and pituitary gland were conducted in one patient. Functional consequences of the homozygous HID1 variant p.R433W were investigated by Seahorse XF Assay in fibroblasts of two patients. RESULTS: Bi-allelic variants in the gene HID1 domain-containing protein 1 (HID1) were identified in all patients. Postmortem examination confirmed cerebral atrophy with enlarged lateral ventricles. Markedly reduced expression of pituitary hormones was found in pituitary gland tissue. Colocalization of HID1 protein with the TGN was not altered in fibroblasts of patients compared to controls, while the extracellular acidification rate upon stimulation with potassium chloride was significantly reduced in patient fibroblasts compared to controls. INTERPRETATION: Our findings indicate that mutations in HID1 cause an early infantile encephalopathy with hypopituitarism as the leading presentation, and expand the list of syndromic CNS diseases caused by interference of TGN function. ANN NEUROL 2021;90:149-164.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Hipopituitarismo/genética , Alelos , Encefalopatias/patologia , Pré-Escolar , Epilepsia/patologia , Feminino , Humanos , Hipopituitarismo/patologia , Lactente , Masculino , Hipófise/patologia , Sequenciamento do Exoma , Adulto Jovem
14.
Acta Neuropathol ; 142(1): 179-189, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33876327

RESUMO

Glioblastoma IDH-wildtype presents with a wide histological spectrum. Some features are so distinctive that they are considered as separate histological variants or patterns for the purpose of classification. However, these usually lack defined (epi-)genetic alterations or profiles correlating with this histology. Here, we describe a molecular subtype with overlap to the unique histological pattern of glioblastoma with primitive neuronal component. Our cohort consists of 63 IDH-wildtype glioblastomas that harbor a characteristic DNA methylation profile. Median age at diagnosis was 59.5 years. Copy-number variations and genetic sequencing revealed frequent alterations in TP53, RB1 and PTEN, with fewer gains of chromosome 7 and homozygous CDKN2A/B deletions than usually described for IDH-wildtype glioblastoma. Gains of chromosome 1 were detected in more than half of the cases. A poorly differentiated phenotype with frequent absence of GFAP expression, high proliferation index and strong staining for p53 and TTF1 often caused misleading histological classification as carcinoma metastasis or primitive neuroectodermal tumor. Clinically, many patients presented with leptomeningeal dissemination and spinal metastasis. Outcome was poor with a median overall survival of only 12 months. Overall, we describe a new molecular subtype of IDH-wildtype glioblastoma with a distinct histological appearance and genetic signature.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilação de DNA , Glioblastoma/genética , Glioblastoma/patologia , Tumores Neuroectodérmicos Primitivos/genética , Tumores Neuroectodérmicos Primitivos/patologia , PTEN Fosfo-Hidrolase/genética , Proteínas de Ligação a Retinoblastoma/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 7/genética , Estudos de Coortes , Inibidor p16 de Quinase Dependente de Ciclina/genética , Variações do Número de Cópias de DNA , Feminino , Deleção de Genes , Proteína Glial Fibrilar Ácida/biossíntese , Proteína Glial Fibrilar Ácida/genética , Humanos , Masculino , Pessoa de Meia-Idade
15.
Pathologe ; 42(Suppl 1): 69-75, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33721057

RESUMO

BACKGROUND: Autopsy is an important tool for understanding the pathogenesis of diseases, including COVID-19. MATERIAL AND METHODS: On 15 April 2020, together with the German Society of Pathology and the Federal Association of German Pathologists, the German Registry of COVID-19 Autopsies (DeRegCOVID) was launched ( www.DeRegCOVID.ukaachen.de ). Building on this, the German Network for Autopsies in Pandemics (DEFEAT PANDEMIcs) was established on 1 September 2020. RESULTS: The main goal of DeRegCOVID is to collect and distribute de facto anonymized data on potentially all autopsies of people who have died from COVID-19 in Germany in order to meet the need for centralized, coordinated, and structured data collection and reporting during the pandemic. The success of the registry strongly depends on the willingness of the respective centers to report the data, which has developed very positively so far and requires special thanks to all participating centers. The rights to own data and biomaterials (stored decentrally) remain with each respective center. The DEFEAT PANDEMIcs network expands on this and aims to strengthen harmonization and standardization as well as nationwide implementation and cooperation in the field of pandemic autopsies. CONCLUSIONS: The extraordinary cooperation in the field of autopsies in Germany during the COVID-19 pandemic is impressively demonstrated by the establishment of DeRegCOVID, the merger of the registry of neuropathology (CNS-COVID19) with DeRegCOVID and the establishment of the autopsy network DEFEAT PANDEMIcs. It gives a strong signal for the necessity, readiness, and expertise to jointly help manage current and future pandemics by autopsy-derived knowledge.


Assuntos
COVID-19 , Pandemias , Autopsia , Humanos , Sistema de Registros , SARS-CoV-2
16.
J Muscle Res Cell Motil ; 42(2): 381-397, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33710525

RESUMO

Hypertrophic cardiomyopathy (HCM) often leads to heart failure. Mutations in sarcomeric proteins are most frequently the cause of HCM but in many patients the gene defect is not known. Here we report on a young man who was diagnosed with HCM shortly after birth. Whole exome sequencing revealed a mutation in the FLNC gene (c.7289C > T; p.Ala2430Val) that was previously shown to cause aggregation of the mutant protein in transfected cells. Myocardial tissue from patients with this mutation has not been analyzed before and thus, the underlying etiology is not well understood. Myocardial tissue of our patient obtained during myectomy at the age of 23 years was analyzed in detail by histochemistry, immunofluorescence staining, electron microscopy and western blot analysis. Cardiac histology showed a pathology typical for myofibrillar myopathy with myofibril disarray and abnormal protein aggregates containing BAG3, desmin, HSPB5 and filamin C. Analysis of sarcomeric and intercalated disc proteins showed focally reduced expression of the gap junction protein connexin43 and Xin-positive sarcomeric lesions in the cardiomyocytes of our patient. In addition, autophagy pathways were altered with upregulation of LC3-II, WIPI1 and HSPB5, 6, 7 and 8. We conclude that the p.Ala2430Val mutation in FLNC most probably is associated with HCM characterized by abnormal intercalated discs, disarray of myofibrils and aggregates containing Z-disc proteins similar to myofibrillar myopathy, which supports the pathological effect of the mutation.


Assuntos
Cardiomiopatia Hipertrófica , Filaminas , Miopatias Congênitas Estruturais , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Proteínas Reguladoras de Apoptose , Cardiomiopatia Hipertrófica/genética , Filaminas/genética , Humanos , Masculino , Mutação , Miócitos Cardíacos , Adulto Jovem
17.
Pathologe ; 42(2): 216-223, 2021 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-33594614

RESUMO

BACKGROUND: Autopsy is an important tool for understanding the pathogenesis of diseases, including COVID-19. MATERIAL AND METHODS: On 15 April 2020, together with the German Society of Pathology and the Federal Association of German Pathologists, the German Registry of COVID-19 Autopsies (DeRegCOVID) was launched ( www.DeRegCOVID.ukaachen.de ). Building on this, the German Network for Autopsies in Pandemics (DEFEAT PANDEMIcs) was established on 1 September 2020. RESULTS: The main goal of DeRegCOVID is to collect and distribute de facto anonymized data on potentially all autopsies of people who have died from COVID-19 in Germany in order to meet the need for centralized, coordinated, and structured data collection and reporting during the pandemic. The success of the registry strongly depends on the willingness of the respective centers to report the data, which has developed very positively so far and requires special thanks to all participating centers. The rights to own data and biomaterials (stored decentrally) remain with each respective center. The DEFEAT PANDEMIcs network expands on this and aims to strengthen harmonization and standardization as well as nationwide implementation and cooperation in the field of pandemic autopsies. CONCLUSIONS: The extraordinary cooperation in the field of autopsies in Germany during the COVID-19 pandemic is impressively demonstrated by the establishment of DeRegCOVID, the merger of the registry of neuropathology (CNS-COVID19) with DeRegCOVID and the establishment of the autopsy network DEFEAT PANDEMIcs. It gives a strong signal for the necessity, readiness, and expertise to jointly help manage current and future pandemics by autopsy-derived knowledge.


Assuntos
COVID-19 , Pandemias , Autopsia , Humanos , Sistema de Registros , SARS-CoV-2
18.
Nat Commun ; 12(1): 681, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514719

RESUMO

Endothelial cells play a critical role in the adaptation of tissues to injury. Tissue ischemia induced by infarction leads to profound changes in endothelial cell functions and can induce transition to a mesenchymal state. Here we explore the kinetics and individual cellular responses of endothelial cells after myocardial infarction by using single cell RNA sequencing. This study demonstrates a time dependent switch in endothelial cell proliferation and inflammation associated with transient changes in metabolic gene signatures. Trajectory analysis reveals that the majority of endothelial cells 3 to 7 days after myocardial infarction acquire a transient state, characterized by mesenchymal gene expression, which returns to baseline 14 days after injury. Lineage tracing, using the Cdh5-CreERT2;mT/mG mice followed by single cell RNA sequencing, confirms the transient mesenchymal transition and reveals additional hypoxic and inflammatory signatures of endothelial cells during early and late states after injury. These data suggest that endothelial cells undergo a transient mes-enchymal activation concomitant with a metabolic adaptation within the first days after myocardial infarction but do not acquire a long-term mesenchymal fate. This mesenchymal activation may facilitate endothelial cell migration and clonal expansion to regenerate the vascular network.


Assuntos
Endotélio/patologia , Transição Epitelial-Mesenquimal/genética , Infarto do Miocárdio/patologia , Miocárdio/patologia , Animais , Movimento Celular/genética , Plasticidade Celular/genética , Proliferação de Células/genética , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Endotélio/citologia , Genes Reporter/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Transgênicos , Miocárdio/citologia , RNA-Seq , Análise de Célula Única
19.
Acta Neuropathol ; 140(4): 569-581, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32776277

RESUMO

Diffuse IDH-mutant astrocytic tumors are rarely diagnosed in the cerebellum or brainstem. In this multi-institutional study, we characterized a series of primary infratentorial IDH-mutant astrocytic tumors with respect to clinical and molecular parameters. We report that about 80% of IDH mutations in these tumors are of non-IDH1-R132H variants which are rare in supratentorial astrocytomas. Most frequently, IDH1-R132C/G and IDH2-R172S/G mutations were present. Moreover, the frequencies of ATRX-loss and MGMT promoter methylation, which are typically associated with IDH mutations in supratentorial astrocytic tumors, were significantly lower in the infratentorial compartment. Gene panel sequencing revealed two samples with IDH1-R132C/H3F3A-K27M co-mutations. Genome-wide DNA methylation as well as chromosomal copy number profiling provided further evidence for a molecular distinctiveness of infratentorial IDH-mutant astrocytomas. Clinical outcome of patients with infratentorial IDH-mutant astrocytomas is significantly better than that of patients with diffuse midline gliomas, H3K27M-mutant (p < 0.005) and significantly worse than that of patients with supratentorial IDH-mutant astrocytomas (p = 0.028). The presented data highlight the very existence and distinctiveness of infratentorial IDH-mutant astrocytomas that have important implications for diagnostics and prognostication. They imply that molecular testing is critical for detection of these tumors, since many of these tumors cannot be identified by immunohistochemistry applied for the mutated IDH1-R132H protein or loss of ATRX.


Assuntos
Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Infratentoriais/genética , Neoplasias Infratentoriais/patologia , Isocitrato Desidrogenase/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Adulto Jovem
20.
Front Oncol ; 10: 477, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373516

RESUMO

Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. We present a case of a 42-year-old male patient presenting with headache and vomiting. Imaging demonstrated obstructive hydrocephalus and a ring-enhancing lesion in the right posterior thalamus. After endoscopic third ventriculostomy and stereotactic biopsy, the histopathologic diagnosis of a malignant glioma was confirmed by DNA methylation array as GBM isocitrate dehydrogenase wild type. The patient was treated with combined treatment of chemoradiation with temozolomide (TMZ) including proton boost, TMZ maintenance, and tumor-treating fields. In this case report, complete radiological response was observed 1 year after the end of radiation therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...